Must the Spectrum of a Random Schrödinger Operator Contain an Interval?

نویسندگان

چکیده

We consider Schrödinger operators in $$\ell ^2({\mathbb Z})$$ whose potentials are given by independent (not necessarily identically distributed) random variables. ask whether it is true that almost surely its spectrum contains an interval. provide affirmative answer the case of a sum perturbatively small quasi-periodic potential with analytic sampling function and Diophantine frequency vector term Anderson type, distributed variables (with some small-gap assumption for support single-site distribution). The proof proceeds extending result about presence ground states atypical realizations classical model, which we prove here as well appears to be new.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schrödinger Operator on Homogeneous Metric Trees : Spectrum in Gaps

The paper studies the spectral properties of the Schrödinger operator A gV = A 0 + gV on a homogeneous rooted metric tree, with a decaying real-valued potential V and a coupling constant g ≥ 0. The spectrum of the free Laplacian A 0 = −∆ has a band-gap structure with a single eigenvalue of infinite multiplicity in the middle of each finite gap. The perturbation gV gives rise to extra eigenvalue...

متن کامل

Finite Element Approximations to the Discrete Spectrum of the Schrödinger Operator with the Coulomb Potential

In the present paper, the authors consider the Schrödinger operator H with the Coulomb potential defined in R3m, where m is a positive integer. Both bounded domain approximations to multielectron systems and finite element approximations to the helium system are analyzed. The spectrum of H becomes completely discrete when confined to bounded domains. The error estimate of the bounded domain app...

متن کامل

On the spectrum and eigenfunctions of the Schrödinger operator with Aharonov-Bohm magnetic field

We explicitly compute the spectrum and eigenfunctions of the magnetic Schrödinger operator H( A,V) = (i∇ + A)2 + V in L2(R2), with Aharonov-Bohm vector potential, A(x1,x2)= α(−x2,x1)/|x|2, and either quadratic or Coulomb scalar potential V . We also determine sharp constants in the CLR inequality, both dependent on the fractional part of α and both greater than unity. In the case of quadratic p...

متن کامل

Universität Regensburg Mathematik L p - spectrum of the Schrödinger operator with inverted harmonic oscillator potential

We determine the L-spectrum of the Schrödinger operator with the inverted harmonic oscillator potential V (x) = −x for 1 ≤ p ≤ ∞.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2022

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-022-04395-w